

Welcome to Crunch Cube’s documentation!

Crunch Cube allows you to manipulate cube responses from the Crunch API using
Python. We’ll refer to these cube responses as cubes in the subsequent
text. When used in conjunction with pycrunch, this library can unlock
powerful second-order analytics and visualizations.

A cube is obtained from the Crunch.io platform as a JSON response to
a specific query created by a user. The most common usage is to obtain the
following:

	Cross correlation between different variables

	Margins of the cross-tab cube

	Proportions of the cross-tab cube (e.g. proportions of each single
element to the entire sample size)

Crunch Cube allows you to access these values from a cube response without
dealing with the complexities of the underlying JSON format.

The data in a cube is often best represented in a table-like format. For this
reason, many API methods return data as a numpy.ndarray object.

Installation

The Crunch Cube package [https://pypi.org/project/cr.cube/] can be installed via pip install:

pip install cr.cube

A quick example

After the cr.cube package has been successfully installed, the usage
is as simple as:

>>> from cr.cube.cube import Cube

>>> ### Obtain the crunch cube JSON payload using app.crunch.io, pycrunch, rcrunch or scrunch
>>> ### And store it in the 'cube_JSON_response' variable

>>> cube = Cube(cube_JSON_response)
>>> print(cube)
Cube(name='MyCube', dimension_types='CAT x CAT')
>>> cube.counts
np.array([[1169, 547],
 [1473, 1261]])

For developers

For development mode, Crunch Cube needs to be installed from the local
checkout of the crunch-cube repository. Navigate to the top-level
folder of the repo, on the local file system, and run:

$ python setup.py develop
$ py.test tests -cov=cr.cube

Note that we are happy to accept pull requests, please be certain that
your code has proper coverage before submitting. All pull requests
will be tested by travis.

[image: _images/crunch-cube.svg]
 [https://www.travis-ci.org/Crunch-io/crunch-cube][image: _images/badge.svg]
 [https://coveralls.io/github/Crunch-io/crunch-cube?branch=master][image: _images/e5315c9b27422c302ae20d221f98713fa0f33ee2.svg]
 [http://crunch-cube.readthedocs.io/en/latest/?badge=latest]

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

In the Crunch system, any analysis is also referred to as a cube. Cubes are
the mechanical means of representing analyses to and from the Crunch system;
you can think of them as spreadsheets that might have other than two dimensions.
A cube consists of two primary parts: “dimensions” which supply the cube axes,
and “measures” which populate the cells. Although both the request and response
include dimensions and measures, it is important to distinguish between them.
The request supplies expressions for each, while the response has data
(and metadata) for each. The request declares what variables to use and what
to do with them, while the response includes and describes the results.

At an abstract level, cubes contain arrays (numpy arrays) of measures.
Measures frequently (although not always!) are simply counts of responses that
fall into each cell of the cross-tabulation (also sometimes called contingency tables).
Cubes always include the unweighted counts which are important for some analyses,
or could contain other measures which are treated differently.

Check out the details here [https://help.crunch.io/hc/en-us/articles/360044737751-Multidimensional-Analysis]

Installation

The Crunch Cube package [https://pypi.org/project/cr.cube/] can be installed via pip install:

pip install cr.cube

Cube object

Below a quick example on how instanciate and query the counts of a cube

>>> from cr.cube.cube import Cube

>>> ### Obtain the crunch cube JSON payload using app.crunch.io, pycrunch, rcrunch or scrunch
>>> ### And store it in the 'cube_JSON_response' variable

>>> cube = Cube(cube_JSON_response)
>>> print(cube)
Cube(name='MyCube', dimension_types='CAT x CAT')
>>> cube.counts
np.array([[1169, 547],
 [1473, 1261]])

If the JSON response includes both weighted and unweighted_counts, cube.counts
corresponds to the weighted version of the counts; but we still have both measures:

>>> cube.counts
np.array([[1122.345, 234.456,
 1432.2331, 1211.8763]])
>>> cube.unweighted_counts
np.array([[1169, 547],
 [1473, 1261]])

Cube Partitions

A cube can contain 1 or more partitions according to its dimensionality.
For example a CAT_X_CAT cube has a single 2D partition, identified as a Slice
object in the cubepart module, a CA_SUBVAR_X_CA_CAT cube has two 2D partitions
that can be represented like:

>>> cube.partitions[0]
_Slice(name='pets_array', dimension_types='CA_SUBVAR x CA_CAT')
Showing: COUNT
 not selected selected
------ -------------- ----------
cat 13 12
dog 16 12
wombat 11 12
Available measures: [<CUBE_MEASURE.COUNT: 'count'>]
>>> cube.partitions[1]
_Slice(name='pets_array', dimension_types='CA_SUBVAR x CA_CAT')
Showing: COUNT
 not selected selected
------ -------------- ----------
cat 32 22
dog 24 28
wombat 21 26
Available measures: [<CUBE_MEASURE.COUNT: 'count'>]

Let’s back to the CAT_X_CAT cube, the example below shows how to access to some
of the avilable measures for the analyses.

>>> cube = Cube(cube_JSON_response_CAT_X_CAT)
>>> partition = cube.partition[0]
>>> partition.column_proportions
array([[0.5, 0.4],
 [0.5, 0.6]])
>>> partition.column_std_dev
array([[0.5 , 0.48989795],
 [0.5 , 0.48989795]])
>>> partition.columns_scale_mean
array([1.5, 1.6])

For the complete measure references visit the Partition API

Cube Objects

Cube

	
class cr.cube.cube.Cube(response: Union[str, Dict[KT, VT]], cube_idx: Optional[int] = None, transforms: Optional[Dict[KT, VT]] = None, population: Optional[int] = None, mask_size: int = 0)

	Provides access to individual slices on a cube-result.

It also provides some attributes of the overall cube-result.

cube_idx must be None (or omitted) for a single-cube CubeSet. This indicates the
CubeSet contains only a single cube and influences behaviors like CA-as-0th.

	
available_measures

	frozenset of available CUBE_MEASURE members in the cube response.

	
counts_with_missings

	ndarray of weighted, unweighted or valid counts including missing values.

The difference from .counts is that this property includes value for missing
categories.

	
covariance

	Optional float64 ndarray of the cube_covariance if the measure exists.

	
cube_index

	Offset of this cube within its CubeSet.

	
description

	Return the description of the cube.

	
dimension_types

	Tuple of DIMENSION_TYPE member for each dimension of cube.

	
dimensions

	List of visible dimensions.

A cube involving a multiple-response (MR) variable has two dimensions
for that variable (subvariables and categories dimensions), but is
“collapsed” into a single effective dimension for cube-user purposes
(its categories dimension is supressed). This collection will contain
a single dimension for each MR variable and therefore may have fewer
dimensions than appear in the cube response.

	
has_weighted_counts

	True if cube response has weighted count data.

	
inflate() → cr.cube.cube.Cube

	Return new Cube object with rows-dimension added.

A multi-cube (tabbook) response formed from a function (e.g. mean()) on
a numeric variable arrives without a rows-dimension.

	
means

	Optional float64 ndarray of the cube_means if the measure exists.

	
missing

	Get missing count of a cube.

	
n_responses

	Total (int) number of responses considered.

	
name

	Return the name of the cube.

If the cube has 2 diensions, return the name of the second one. In case
of a different number of dimensions, default to returning the name of
the last one. In case of no dimensions, return the empty string.

	
ndim

	int count of dimensions for this cube.

	
overlaps

	Optional float64 ndarray of cube_overlaps if the measure exists.

The array has as many dimensions as there are defined in the cube query, plus
the extra subvariables dimension as the last dimension.

	
partitions

	Sequence of _Slice, _Strand, or _Nub objects from this cube-result.

	
population_fraction

	The filtered/unfiltered ratio for cube response.

This value is required for properly calculating population on a cube
where a filter has been applied. Returns 1.0 for an unfiltered cube.
Returns np.nan if the unfiltered count is zero, which would
otherwise result in a divide-by-zero error.

	
stddev

	Optional float64 ndarray of the cube_stddev if the measure exists.

	
sums

	Optional float64 ndarray of the cube_sum if the measure exists.

	
title

	str alternate-name given to cube-result.

This value is suitable for naming a Strand when displayed as a column. In this
use-case it is a stand-in for the columns-dimension name since a strand has no
columns dimension.

	
unweighted_counts

	ndarray of unweighted counts, valid elements only.

Unweighted counts are drawn from the result.counts field of the cube result.
These counts are always present, even when the measure is numeric and there are
no count measures. These counts are always unweighted, regardless of whether the
cube is “weighted”.

In case of presence of valid counts in the cube response the counts are replaced
with the valid counts measure.

	
unweighted_valid_counts

	Optional float64 ndarray of unweighted_valid_counts if the measure exists.

	
valid_counts_summary_range

	Optional (min, max) tuple of summary valid counts

	
valid_overlaps

	Optional float64 ndarray of cube_valid_overlaps if the measure exists.

The array has as many dimensions as there are defined in the cube query, plus
the extra subvariables dimension as the last dimension.

	
weighted_counts

	ndarray of weighted counts, valid elements only.

In case of presence of valid counts in the cube response the weighted counts
are replaced with the valid counts measure.

	
weighted_valid_counts

	Optional float64 ndarray of weighted_valid_counts if the measure exists.

CubeSet

	
class cr.cube.cube.CubeSet(cube_responses: List[Dict[KT, VT]], transforms: Dict[KT, VT], population: int, min_base: int)

	Represents a multi-cube cube-response.

Also works just fine for a single cube-response passed inside a sequence, allowing
uniform handling of single and multi-cube responses.

cube_responses is a sequence of cube-response dicts received from Crunch. The
sequence can contain a single item, such as a cube-response for a slide, but it must
be contained in a sequence. A tabbook cube-response sequence can be passed as it was
received.

transforms is a sequence of transforms dicts corresponding in order to the
cube-responses. population is the estimated target population and is used when
a population-projection measure is requested. min_base is an integer representing
the minimum sample-size used for indicating values that are unreliable by reason of
insufficient sample (base).

	
available_measures

	frozenset of available measures of the first cube in this set.

	
can_show_pairwise

	True if all 2D cubes in a multi-cube set can provide pairwise comparison.

	
description

	str description of first cube in this set.

	
has_weighted_counts

	True if cube-responses include a weighted-count measure.

	
is_ca_as_0th

	True for multi-cube when first cube represents a categorical-array.

A “CA-as-0th” tabbook tab is “3D” in the sense it is “sliced” into one table
(partition-set) for each of the CA subvariables.

	
missing_count

	The number of missing values from first cube in this set.

	
n_responses

	Total number of responses considered from first cube in this set.

	
name

	str name of first cube in this set.

	
partition_sets

	Sequence of cube-partition collections across all cubes of this cube-set.

This value might look like the following for a ca-as-0th tabbook. For example:

(
 (_Strand, _Slice, _Slice),
 (_Strand, _Slice, _Slice),
 (_Strand, _Slice, _Slice),
)

and might often look like this for a typical slide:

((_Slice,))

Each partition set represents the partitions for a single “stacked” table. A 2D
slide has a single partition-set of a single _Slice object, as in the second
example above. A 3D slide would have multiple partition sets, each of a single
_Slice. A tabook will have multiple partitions in each set, the first being
a _Strand and the rest being _Slice objects. Multiple partition sets only arise
for a tabbook in the CA-as-0th case.

	
population_fraction

	The filtered/unfiltered ratio for this cube-set.

This value is required for properly calculating population on a cube where
a filter has been applied. Returns 1.0 for an unfiltered cube. Returns np.nan
if the unfiltered count is zero, which would otherwise result in
a divide-by-zero error.

	
valid_counts_summary_range

	The valid count summary values from first cube in this set.

Partition Objects

CubePartition

	
class cr.cube.cubepart.CubePartition(cube, transforms=None)

	A slice, a strand, or a nub drawn from a cube-response.

These represent 2, 1, or 0 dimensions of a cube, respectively.

	
cube_index

	Offset of this partition’s cube in its CubeSet.

Used to differentiate certain partitions like a filtered rows-summary strand.

	
dimension_types

	Sequence of member of cr.cube.enum.DIMENSION_TYPE for each dimension.

Items appear in rows-dimension, columns-dimension order.

	
classmethod factory(cube, slice_idx=0, transforms=None, population=None, ca_as_0th=None, mask_size=0)

	Return slice, strand, or nub object appropriate to passed parameters.

	
ndim

	int count of dimensions for this partition.

	
population_fraction

	population fraction of the cube

	
selected_category_labels

	Tuple of str: names of any and all underlying categories in ‘Selected’.

	
shape

	Tuple of int vector counts for this partition.

Not to be confused with numpy.ndarray.shape, this represent the count of rows
and columns respectively, in this partition. It does not necessarily represent
the shape of any underlying numpy.ndarray object that may arise in the
implementation of the cube partition. In particular, the value of any count in
the shape can be zero.

A _Slice has a shape like (2, 3) representing (row-count, col-count). A _Strand
has a shape like (5,) which represents its row-count. The shape of a _Nub is
unconditionally () (an empty tuple).

	
variable_name

	str representing the name of the superheading variable.

Slice

	
class cr.cube.cubepart._Slice(cube, slice_idx, transforms, population, mask_size)

	2D cube partition.

A slice represents the cross-tabulation of two dimensions, often, but not
necessarily contributed by two different variables. A single CA variable has two
dimensions which can be crosstabbed in a slice.

	
column_aliases

	1D str ndarray of alias for each column, for use as column headings.

	
column_codes

	1D int ndarray of code for each column, for use as column headings.

	
column_index

	2D np.float64 ndarray of column-index “percentage”.

The index values represent the difference of the percentages to the
corresponding baseline values. The baseline values are the univariate
percentages of the rows variable.

	
column_labels

	1D str ndarray of name for each column, for use as column headings.

	
column_proportion_variances

	2D ndarray of np.float64 column-proportion variance for each matrix cell.

	
column_proportions

	2D np.float64 ndarray of column-proportion for each matrix cell.

This is the proportion of the weighted-N (aka. weighted base) of its column
that the weighted-count in each cell represents, generally a number between
0.0 and 1.0. Note that within an inserted subtotal vector involving differences,
the values can range between -1.0 and 1.0.

	
column_proportions_moe

	1D/2D np.float64 ndarray of margin-of-error (MoE) for columns proportions.

The values are represented as fractions, analogue to the column_proportions
property. This means that the value of 3.5% will have the value 0.035.
The values can be np.nan when the corresponding percentage is also np.nan, which
happens when the respective columns margin is 0.

	
column_share_sum

	2D optional np.float64 ndarray of column share sum value for each table cell.

Raises ValueError if the cube-result does not include a sum cube-measure.

Column share of sum is the sum of each subvar item divided by the TOTAL number
of column items.

	
column_std_dev

	standard deviation for column percentages

std_deviation = sqrt(variance)

	
column_std_err

	standard error for column percentages

std_error = sqrt(variance/N)

	
column_unweighted_bases

	2D np.float64 ndarray of unweighted col-proportion denominator per cell.

	
column_weighted_bases

	2D np.float64 ndarray of column-proportion denominator for each cell.

	
columns_base

	1D/2D np.float64 ndarray of unweighted-N for each column/cell of slice.

This array is 2D (a distinct base for each cell) when the rows dimension is MR,
because each MR-subvariable has its own unweighted N. This is because not every
possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
columns_dimension_description

	str description assigned to columns-dimension.

	
columns_dimension_name

	str name assigned to columns-dimension.

Reflects the resolved dimension-name transform cascade.

	
columns_dimension_type

	Member of cr.cube.enum.DIMENSION_TYPE describing columns dimension.

	
columns_margin

	1D or 2D np.float64 ndarray of weighted-N for each column of slice.

This array is 2D (a distinct margin value for each cell) when the rows dimension
is MR, because each MR-subvariable has its own weighted N. This is because not
every possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
columns_margin_proportion

	1D or 2D np.float64 ndarray of weighted-proportion for each column of slice.

This array is 2D (a distinct margin value for each cell) when the rows dimension
is MR, because each MR-subvariable has its own weighted N. This is because not
every possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
columns_scale_mean

	Optional 1D np.float64 ndarray of scale mean for each column.

The returned vector is to be interpreted as a summary row. Also note that
the underlying scale values are based on the numeric values of the opposing
rows-dimension elements.

This value is None if no row element has an assigned numeric value.

	
columns_scale_mean_margin

	Optional float overall mean of column-scale values.

This value is the “margin” of the .columns_scale_mean vector and might
typically appear in the cell immediately to the right of the
.columns_scale_mean summary-row. It is similar to a “table-total” value, in
that it is a scalar that might appear in the lower right-hand corner of a table,
but note that it does not represent the overall table in that
.rows_scale_mean_margin will not have the same value (except by chance).
This value derives from the numeric values of the row elements whereas its
counterpart .rows_scale_mean_margin derives from the numeric values of the
column elements.

This value is None if no row has an assigned numeric-value.

	
columns_scale_mean_pairwise_indices

	Sequence of column-idx tuples indicating pairwise-t result of scale-means.

The sequence contains one tuple for each column. The indicies in a column’s
tuple each identify another of the columns who’s scale-mean is
pairwise-significant to that of the tuple’s column. Pairwise significance is
computed based on the more restrictive (lesser-value) threshold specified in the
analysis.

	
columns_scale_mean_pairwise_indices_alt

	Optional sequence of column-idx tuples indicating pairwise-t of scale-means.

This value is None if no secondary threshold value (alpha) was specified in
the analysis. Otherwise, it is the same calculation as
.columns_scale_mean_pairwise_indices computed using the less restrictive
(greater-valued) threshold.

	
columns_scale_mean_stddev

	Optional 1D np.float64 ndarray of scale-mean std-deviation for each column.

The returned vector (1D array) is to be interpreted as a summary row. Also
note that the underlying scale values are based on the numeric values of the
opposing rows-dimension elements.

This value is None if no row element has been assigned a numeric value.

	
columns_scale_mean_stderr

	Optional 1D np.float64 ndarray of scale-mean standard-error for each row.

The returned vector is to be interpreted as a summary row. Also note that the
underlying scale values are based on the numeric values of the opposing
rows-dimension elements.

This value is None if no row element has a numeric value assigned or if
the columns-weighted-base is None (eg an array variable in the row dim).

	
columns_scale_median

	Optional 1D np.float64 ndarray of scale median for each column.

The returned vector is to be interpreted as a summary row. Also note that the
underlying scale values are based on the numeric values of the opposing
rows-dimension elements.

This value is None if no row element has been assigned a numeric value.

	
columns_scale_median_margin

	Optional scalar numeric median of all column-scale values.

This value is the “margin” of the .columns_scale_median vector and might
typically appear in the cell immediately to the right of the
.columns_scale_median summary-row. It is similar to a “table-total” value, in
that it is a scalar that might appear in the lower right-hand corner of a table,
but note that it does not represent the overall table in that
.rows_scale_median_margin will not have the same value (except by chance).
This value derives from the numeric values of the row elements whereas its
counterpart .rows_scale_median_margin derives from the numeric values of
the column elements.

This value is None if no row has an assigned numeric-value.

	
counts

	2D np.float64 ndarray of weighted cube counts.

	
derived_column_idxs

	tuple of int index of each derived column-element in slice.

An element is derived if it’s a subvariable of a multiple response dimension,
which has been produced by the zz9, and inserted into the response data.

All other elements, including regular MR and CA subvariables, as well as
categories of CAT dimensions, are not derived. Subtotals are also not derived
in this sense, because they’re not even part of the data (elements).

	
derived_row_idxs

	tuple of int index of each derived row-element in slice.

An element is derived if it’s a subvariable of a multiple response dimension,
which has been produced by the zz9, and inserted into the response data.

All other elements, including regular MR and CA subvariables, as well as
categories of CAT dimensions, are not derived. Subtotals are also not derived
in this sense, because they’re not even part of the data (elements).

	
description

	str description of this slice, which it takes from its rows-dimension.

	
diff_column_idxs

	tuple of int index of each difference column-element in slice.

	
diff_row_idxs

	tuple of int index of each difference row-element in slice.

	
has_scale_means

	True if the slice has valid columns scale mean.

	
inserted_column_idxs

	tuple of int index of each subtotal column in slice.

	
inserted_row_idxs

	tuple of int index of each subtotal row in slice.

	
means

	2D optional np.float64 ndarray of mean value for each table cell.

Cell value is np.nan for each cell corresponding to an inserted subtotal
(mean of addend cells cannot simply be added to get the mean of the subtotal).

Raises ValueError if the cube-result does not include a means cube-measure.

	
name

	str name assigned to this slice.

A slice takes the name of its rows-dimension.

	
pairwise_indices

	2D ndarray of tuple of int column-idxs meeting pairwise-t threshold.

Like:

[
 [(1, 3, 4), (), (0,), (), ()],
 [(2,), (1, 2), (), (), (0, 3)],
 [(), (), (), (), ()],
]

Has the same shape as .counts. Each int represents the offset of another
column in the same row with a confidence interval meeting the threshold defined
for this analysis.

	
pairwise_indices_alt

	2D ndarray of tuple of int column-idxs meeting alternate threshold.

This value is None if no alternate threshold has been defined.

	
pairwise_means_indices

	Optional 2D ndarray of tuple column-idxs significance threshold for mean.

Like:

[
 [(1, 3, 4), (), (0,), (), ()],
 [(2,), (1, 2), (), (), (0, 3)],
 [(), (), (), (), ()],
]

Has the same shape as .means. Each int represents the offset of another
column in the same row with a confidence interval meeting the threshold defined
for this analysis.

	
pairwise_means_indices_alt

	2D ndarray of tuple of column-idxs meeting alternate threshold for mean.

This value is None if no alternate threshold has been defined.

	
pairwise_significance_means_p_vals(column_idx)

	Optional 2D ndarray of means significance p-vals matrices for column idx.

	
pairwise_significance_means_t_stats(column_idx)

	Optional 2D ndarray of means significance t-stats matrices for column idx.

	
pairwise_significance_p_vals(column_idx)

	2D ndarray of pairwise-significance p-vals matrices for column idx.

	
pairwise_significance_t_stats(column_idx)

	return 2D ndarray of pairwise-significance t-stats for selected column.

	
pairwise_significance_tests

	tuple of _ColumnPairwiseSignificance tests.

Result has as many elements as there are columns in the slice. Each
significance test contains p_vals and t_stats (ndarrays that represent
probability values and statistical scores).

	
payload_order

	1D np.int64 ndarray of signed int idx respecting the payload order.

Positive integers indicate the 1-indexed position in payload of regular
elements, while negative integers are the subtotal insertions.

Needed for reordering color palette in exporter.

	
population_counts

	2D np.float64 ndarray of population counts per cell.

The (estimated) population count is computed based on the population value
provided when the Slice is created (._population). It is also adjusted to
account for any filters that were applied as part of the query
(._cube.population_fraction).

._population and _cube.population_fraction are both scalars and so do not
affect sort order.

	
population_counts_moe

	2D np.float64 ndarray of population-count margin-of-error (MoE) per cell.

The values are represented as population estimates, analogue to the
population_counts property. This means that the values will be presented by
actual estimated counts of the population. The values can be np.nan when the
corresponding percentage is also np.nan, which happens when the
respective margin is 0.

When calculating the estimates of categorical dates, the total populatioin is
not “divided” between its categories, but rather considered constant for all
categorical dates (or waves). Hence, the different standard errors will be
applied in these specific cases (like the row_std_err or column_std_err).
If categorical dates are not involved, the standard table_std_err is used.

	
population_proportions

	2D np.float64 ndarray of proportions

The proportion used to calculate proportion counts depends on the dimension
types.

	
population_std_err

	2D np.float64 ndarray of standard errors

The proportion used to calculate proportion counts depends on the dimension
types.

	
pvals

	2D optional np.float64 ndarray of p-value for each cell.

A p-value is a measure of the probability that an observed difference could have
occurred just by random chance. The lower the p-value, the greater the
statistical significance of the observed difference.

A cell value of np.nan indicates a meaningful p-value could not be computed for
that cell.

	
pvalues

	2D optional np.float64 ndarray of p-value for each cell.

A p-value is a measure of the probability that an observed difference could have
occurred just by random chance. The lower the p-value, the greater the
statistical significance of the observed difference.

A cell value of np.nan indicates a meaningful p-value could not be computed for
that cell.

	
residual_test_stats

	Exposes pvals and zscores (with HS) stacked together

Public method used as cube_method for the SOA API

	
row_aliases

	1D str ndarray of row alias for each matrix row.

These are suitable for use as row headings; alias for subtotal rows appear in
the sequence and alias are ordered to correspond with their respective data
row.

	
row_codes

	1D int ndarray of row codes for each matrix row.

These are suitable for use as row headings; codes for subtotal rows appear in
the sequence and codes are ordered to correspond with their respective data
row.

	
row_labels

	1D str ndarray of row name for each matrix row.

These are suitable for use as row headings; labels for subtotal rows appear in
the sequence and labels are ordered to correspond with their respective data
row.

	
row_order(format=<ORDER_FORMAT.SIGNED_INDEXES: 0>)

	1D np.int64 ndarray of idx for each assembled row of matrix.

If order format is SIGNED_INDEXES negative values represent inserted
subtotal-row locations; for BOGUS_IDS insertios are represented by
ins_{insertion_id} string.

Indices appear in the order rows are to appear in the final result.

Needed for reordering color palette in exporter.

	
row_proportion_variances

	2D ndarray of np.float64 row-proportion variance for each matrix cell.

	
row_proportions

	2D np.float64 ndarray of row-proportion for each matrix cell.

This is the proportion of the weighted-N (aka. weighted base) of its row
that the weighted-count in each cell represents, generally a number between
0.0 and 1.0. Note that within an inserted subtotal vector involving differences,
the values can range between -1.0 and 1.0.

	
row_proportions_moe

	2D np.float64 ndarray of margin-of-error (MoE) for rows proportions.

The values are represented as percentage-fractions, analogue to the
row_proportions property. This means that the value of 3.5% will have the
value 0.035. The values can be np.nan when the corresponding percentage is also
np.nan, which happens when the respective table margin is 0.

	
row_share_sum

	2D optional np.float64 ndarray of row share sum value for each table cell.

Raises ValueError if the cube-result does not include a sum cube-measure.

Row share of sum is the sum of each subvar item divided by the TOTAL number of
row items.

	
row_std_dev

	2D np.float64 ndarray of standard deviation for row percentages.

	
row_std_err

	2D np.float64 ndarray of standard errors for row percentages.

	
row_unweighted_bases

	2D np.float64 ndarray of unweighted row-proportion denominator per cell.

	
row_weighted_bases

	2D np.float64 ndarray of row-proportion denominator for each table cell.

	
rows_base

	1D/2D np.float64 ndarray of unweighted-N for each row/cell of slice.

This array is 2D (a distinct base for each cell) when the columns dimension is
MR, because each MR-subvariable has its own unweighted N. This is because not
every possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
rows_dimension_alias

	str alias assigned to rows-dimension.

	
rows_dimension_description

	str description assigned to rows-dimension.

Reflects the resolved dimension-description transform cascade.

	
rows_dimension_fills

	tuple of optional RGB str like “#def032” fill color for each row in slice.

The values reflect the resolved element-fill transform cascade. The length and
ordering of the sequence correspond to the rows in the slice, including
accounting for insertions and hidden rows. A value of None indicates the
default fill, possibly determined by a theme or template.

	
rows_dimension_name

	str name assigned to rows-dimension.

Reflects the resolved dimension-name transform cascade.

	
rows_dimension_type

	Member of cr.cube.enum.DIMENSION_TYPE specifying type of rows dimension.

	
rows_margin

	1D or 2D np.float64 ndarray of weighted-N for each column of slice.

This array is 2D (a distinct margin value for each cell) when the columns
dimension is MR, because each MR-subvariable has its own weighted N. This is
because not every possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
rows_margin_proportion

	1D or 2D np.float64 ndarray of weighted-proportion for each column of slice.

This array is 2D (a distinct margin value for each cell) when the columns
dimension is MR, because each MR-subvariable has its own weighted N. This is
because not every possible response is necessarily offered to every respondent.

In all other cases, the array is 1D, containing one value for each column.

	
rows_scale_mean

	Optional 1D np.float64 ndarray of scale mean for each row.

The returned vector is to be interpreted as a summary column. Also note that
the underlying scale values are based on the numeric values of the opposing
columns-dimension elements.

This value is None if no column element has an assigned numeric value.

	
rows_scale_mean_margin

	Optional float overall mean of row-scale values.

This value is the “margin” of the .rows_scale_mean vector and might typically
appear in the cell immediately below the .rows_scale_mean summary-column. It
is similar to a “table-total” value, in that it is a scalar that might appear in
the lower right-hand corner of a table, but note that it does not represent
the overall table in that .columns_scale_mean_margin will not have the same
value (except by chance). This value derives from the numeric values of the
column elements whereas its counterpart .columns_scale_mean_margin derives
from the numeric values of the row elements.

This value is None if no column has an assigned numeric-value.

	
rows_scale_mean_stddev

	Optional 1D np.float64 ndarray of std-deviation of scale-mean for each row.

The returned vector (1D array) is to be interpreted as a summary column. Also
note that the underlying scale values are based on the numeric values of the
opposing columns-dimension elements.

This value is None if no column elements have an assigned numeric value.

	
rows_scale_mean_stderr

	Optional 1D np.float64 ndarray of standard-error of scale-mean for each row.

The returned vector is to be interpreted as a summary column. Also note that
the underlying scale values are based on the numeric values of the opposing
columns-dimension elements.

This value is None if no column element has a numeric value assigned or if
the rows-weighted-base is None (eg an array variable in the column dim).

	
rows_scale_median

	Optional 1D np.float64 ndarray of scale median for each row.

The returned vector is to be interpreted as a summary column. Also note that
the underlying scale values are based on the numeric values of the opposing
columns-dimension elements.

This value is None if no column element has an assigned numeric value.

	
rows_scale_median_margin

	Optional scalar numeric median of all row-scale values.

This value is the “margin” of the .rows_scale_median vector and might
typically appear in the cell immediately below the .rows_scale_median
summary-column. It is similar to a “table-total” value, in that it is a scalar
that might appear in the lower right-hand corner of a table, but note that it
does not represent the overall table in that .columns_scale_mean_margin will
not have the same value (except by chance). This value derives from the numeric
values of the column elements whereas its counterpart
.columns_scale_median_margin derives from the numeric values of the row
elements.

This value is None if no column has an assigned numeric-value.

	
smoothed_column_index

	2D np.float64 ndarray of smoothed column-index “percentage”.

If cube has smoothing specification in the transforms it will return the
column index smoothed according to the algorithm and the parameters
specified, otherwise it fallbacks to unsmoothed values.

	
smoothed_column_percentages

	2D np.float64 ndarray of smoothed column-percentages for each matrix cell.

If cube has smoothing specification in the transforms it will return the
column percentages smoothed according to the algorithm and the parameters
specified, otherwise it fallbacks to unsmoothed values.

	
smoothed_column_proportions

	2D np.float64 ndarray of smoothed column-proportion for each matrix cell.

This is the proportion of the weighted-count for cell to the weighted-N of the
column the cell appears in (aka. column-margin). Generally a number between 0.0
and 1.0 inclusive, but subtotal differences can be between -1.0 and 1.0
inclusive.

If cube has smoothing specification in the transforms it will return the
column proportions smoothed according to the algorithm and the parameters
specified, otherwise it fallbacks to unsmoothed values.

	
smoothed_columns_scale_mean

	Optional 1D np.float64 ndarray of smoothed scale mean for each column.

If cube has smoothing specification in the transforms it will return the
column scale mean smoothed according to the algorithm and the parameters
specified, otherwise it fallbacks to unsmoothed values.

	
smoothed_means

	2D optional np.float64 ndarray of smoothed mean value for each table cell.

If cube has smoothing specification in the transforms it will return the
smoothed means according to the algorithm and the parameters specified,
otherwise it fallbacks to unsmoothed values.

	
stddev

	2D optional np.float64 ndarray of stddev value for each table cell.

Raises ValueError if the cube-result does not include a stddev cube-measure.

	
sums

	2D optional np.float64 ndarray of sum value for each table cell.

Raises ValueError if the cube-result does not include a sum cube-measure.

	
tab_alias

	Subvar alias of slice id if first dimension is a CA_SUBVAR, ‘”’ otherwise.

	
tab_label

	Subvar label of slice id if first dimension is a CA_SUBVAR, ‘”’ otherwise.

	
table_base

	Scalar or 1D/2D np.float64 ndarray of unweighted-N for table.

This value is scalar when the slice has no MR dimensions, 1D when the slice has
one MR dimension (either MR_X or X_MR), and 2D for an MR_X_MR slice.

The caller must know the dimensionality of the slice in order to correctly
interpret a 1D value for this property.

This value has four distinct forms, depending on the slice dimensions:

	ARR_X_ARR - 2D ndarray with a distinct table-base value per cell.

	ARR_X - 1D ndarray of value per row when only rows dimension is ARR.

	X_ARR - 1D ndarray of value per column when only col dimension is ARR

	CAT_X_CAT - scalar float value when slice has no MR dimension.

	
table_base_range

	[min, max] np.float64 ndarray range of the table_base (table-unweighted-base)

A CAT_X_CAT has a scalar for all table-unweighted-bases, but arrays have more
than one table-weighted-base. This collapses all the values them to the range,
and it is “unpruned”, meaning that it is calculated before any hiding or
removing of empty rows/columns.

	
table_margin

	Scalar or 1D/2D np.float64 ndarray of weighted-N table.

This value is scalar when the slice has no MR dimensions, 1D when the slice has
one MR dimension (either MR_X or X_MR), and 2D for an MR_X_MR slice.

The caller must know the dimensionality of the slice in order to correctly
interpret a 1D value for this property.

This value has four distinct forms, depending on the slice dimensions:

	CAT_X_CAT - scalar float value when slice has no ARRAY dimension.

	ARRAY_X - 1D ndarray of value per row when only rows dimension is ARRAY.

	X_ARRAY - 1D ndarray of value per column when only column is ARRAY.

	ARRAY_X_ARRAY - 2D ndarray with a distinct table-margin value per cell.

	
table_margin_range

	[min, max] np.float64 ndarray range of the table_margin (table-weighted-base)

A CAT_X_CAT has a scalar for all table-weighted-bases, but arrays have more than
one table-weighted-base. This collapses all of the values to a range, and
it is “unpruned”, meaning that it is calculated before any hiding or removing
of empty rows/columns.

	
table_name

	Optional table name for this Slice

Provides differentiated name for each stacked table of a 3D cube.

	
table_proportion_variances

	2D ndarray of np.float64 table-proportion variance for each matrix cell.

	
table_proportions

	2D ndarray of np.float64 fraction of table count each cell contributes.

This is the proportion of the weighted-count for cell to the weighted-N of the
row the cell appears in (aka. table-margin). Generally a number between 0.0 and
1.0 inclusive, but subtotal differences can be between -1.0 and 1.0 inclusive.

	
table_proportions_moe

	1D/2D np.float64 ndarray of margin-of-error (MoE) for table proportions.

The values are represented as fractions, analogue to the table_proportions
property. This means that the value of 3.5% will have the value 0.035. The
values can be np.nan when the corresponding percentage is also np.nan, which
happens when the respective table margin is 0.

	
table_std_dev

	2D np.float64 ndarray of std-dev of table-percent for each table cell.

	
table_std_err

	2D optional np.float64 ndarray of std-error of table-percent for each cell.

A cell value can be np.nan under certain conditions.

	
table_unweighted_bases

	2D np.float64 ndarray of unweighted table-proportion denominator per cell.

	
table_weighted_bases

	2D np.float64 ndarray of table-proportion denominator for each cell.

	
total_share_sum

	2D optional np.float64 ndarray of total share sum value for each table cell.

Raises ValueError if the cube-result does not include a sum cube-measure.

Total share of sum is the sum of each subvar item divided by the TOTAL of items.

	
unweighted_counts

	2D np.float64 ndarray of unweighted count for each slice matrix cell.

	
weighted_counts

	2D np.float64 ndarray of weighted cube counts.

	
zscores

	2D np.float64 ndarray of std-res value for each cell of matrix.

A z-score is also known as a standard score and is the number of standard
deviations above (positive) or below (negative) the population mean a cell’s
value is.

Strand

	
class cr.cube.cubepart._Strand(cube, transforms, population, ca_as_0th, slice_idx, mask_size)

	1D cube-partition.

A strand can arise from a 1D cube (non-CA univariate), or as a partition of
a CA-cube (CAs are 2D) into a sequence of 1D partitions, one for each subvariable.

	
counts

	1D np.float64 ndarray of weighted count for each row of strand.

The values are int when the underlying cube-result has no weighting.

	
derived_row_idxs

	tuple of int index of each derived row-element in this strand.

Subtotals cannot be derived

An element is derived if it’s a subvariable of a multiple response dimension,
which has been produced by the zz9, and inserted into the response data.

All other elements, including regular MR and CA subvariables, as well as
categories of CAT dimensions, are not derived. Subtotals are also not derived
in this sense, because they’re not even part of the data (elements).

	
diff_row_idxs

	tuple of int index of each difference row-element in this strand.

Valid elements are cannot be differences, only some subtotals can.

	
has_scale_means

	True if the strand has valid scale means.

	
inserted_row_idxs

	tuple of int index of each inserted row in this strand.

Suitable for use in applying different formatting (e.g. Bold) to inserted rows.
Provided index values correspond to measure values as-delivered by this strand,
after any insertion of subtotals, re-ordering, and hiding/pruning of rows
specified in a transform has been applied.

Provided index values correspond rows after any insertion of subtotals,
re-ordering, and hiding/pruning.

	
means

	1D np.float64 ndarray of mean for each row of strand.

Raises ValueError when accessed on a cube-result that does not contain a means
cube-measure.

	
min_base_size_mask

	1D bool ndarray of True for each row that fails to meet min-base spec.

The “base” is the physical (unweighted) count of respondents to the question.
When this is lower than a specified threshold, the reliability of the value is
too low to be meaningful. The threshold is defined by the caller (user).

	
payload_order

	1D np.int64 ndarray of signed int idx respecting the payload order.

Positive integers indicate the 1-indexed position in payload of regular
elements, while negative integers are the subtotal insertions.

Needed for reordering color palette in exporter.

	
population_counts

	1D np.float64 ndarray of population count for each row of strand.

The (estimated) population count is computed based on the population value
provided when the Strand is created. It is also adjusted to account for any
filters that were applied as part of the query.

	
population_counts_moe

	1D np.float64 ndarray of population margin-of-error (MoE) for table percents.

The values are represented as population estimates, analogue to the
population_counts property. This means that the values will be presented by
actual estimated counts of the population The values can be np.nan when the
corresponding percentage is also np.nan, which happens when the respective
table margin is 0.

	
population_proportion_stderrs

	1D np.float64 population-proportion-standard-error for each row

Generally equal to the table_proprotion_standard_error, but because we don’t
divide the population when the row is a CAT_DATE, can also be all 0s. Used to
calculate the population_counts_moe.

	
population_proportions

	1D np.float64 population-proportion for each row

Generally equal to the table_proprotions, but because we don’t divide the
population when the row is a CAT_DATE, can also be all 1s. Used to calculate
the population_counts.

	
row_aliases

	1D str ndarray of alias for each row, for use as row headings.

	
row_codes

	1D int ndarray of code for each row, for use as row headings.

	
row_count

	int count of rows in a returned measure or marginal.

This count includes inserted rows but not rows that have been hidden/pruned.

	
row_labels

	1D str ndarray of name for each row, suitable for use as row headings.

	
row_order(format=<ORDER_FORMAT.SIGNED_INDEXES: 0>)

	1D np.int64 ndarray of idx for each assembled row of stripe.

If order format is SIGNED_INDEXES negative values represent inserted
subtotal-row locations; for BOGUS_IDS insertios are represented by
ins_{insertion_id} string.
Indices appear in the order rows are to appear in the final result.

Needed for reordering color palette in exporter.

	
rows_base

	1D np.float64 ndarray of unweighted-N for each row of slice.

	
rows_dimension_alias

	str alias assigned to rows-dimension.

	
rows_dimension_description

	str description assigned to rows-dimension.

Reflects the resolved dimension-description transform cascade.

	
rows_dimension_fills

	tuple of optional RGB str like “#def032” fill color for each strand row.

Each value reflects the resolved element-fill transform cascade. The length and
ordering of the sequence correspond to the rows in the slice, including
accounting for insertions, ordering, and hidden rows. A fill value is None
when no explicit fill color is defined for that row, indicating the default fill
color for that row should be used, probably coming from a caller-defined theme.

	
rows_dimension_name

	str name assigned to rows-dimension.

Reflects the resolved dimension-name transform cascade.

	
rows_dimension_type

	Member of DIMENSION_TYPE enum describing type of rows dimension.

	
rows_margin

	1D np.float64 ndarray of weighted-N for each row of slice.

	
scale_mean

	Optional float mean of row numeric-values (scale).

This value is None when no row-elements have a numeric-value assigned. The
numeric value (aka. “scale”) for a row is its count multiplied by the
numeric-value of its element. For example, if 100 women responded “Very Likely”
and the numeric-value of the “Very Likely” response (element) was 4, then the
scale for that row would be 400. The scale mean is the average of those scale
values over the total count of responses.

	
scale_median

	Optional int/float median of scaled weighted-counts.

This value is None when no rows have a numeric-value assigned.

	
scale_std_dev

	Optional np.float64 standard-deviation of scaled weighted counts.

This value is None when no rows have a numeric-value assigned.

	
scale_std_err

	Optional np.float64 standard-error of scaled weighted counts.

This value is None when no rows have a numeric-value assigned. The value has
the same units as the assigned numeric values and indicates the dispersion of
the scaled-count distribution from its mean (scale-mean).

	
scale_stddev

	Optional np.float64 standard-deviation of scaled weighted counts.

This value is None when no rows have a numeric-value assigned.

	
scale_stderr

	Optional np.float64 standard-error of scaled weighted counts.

This value is None when no rows have a numeric-value assigned. The value has
the same units as the assigned numeric values and indicates the dispersion of
the scaled-count distribution from its mean (scale-mean).

	
shape

	Tuple of int vector counts for this partition.

A _Strand has a shape like (5,) which represents its row-count.

Not to be confused with numpy.ndarray.shape, this represent the count of rows
in this strand. It does not necessarily represent the shape of any underlying
numpy.ndarray object In particular, the value of its row-count can be zero.

	
share_sum

	1D np.float64 ndarray of share of sum for each row of strand.

Raises ValueError if the cube-result does not include a sum cube-measure.

Share of sum is the sum of each subvar item divided by the TOTAL number of
items.

	
smoothed_means

	1D np.float64 ndarray of smoothed mean for each row of strand.

If cube has smoothing specification in the transforms it will return the
smoothed means according to the algorithm and the parameters specified,
otherwise it fallbacks to unsmoothed values.

	
stddev

	1D np.float64 ndarray of stddev for each row of strand.

Raises ValueError when accessed on a cube-result that does not contain a stddev
cube-measure.

	
sums

	1D np.float64 ndarray of sum for each row of strand.

Raises ValueError when accessed on a cube-result that does not contain a sum
cube-measure.

	
tab_alias

	Subvar alias of strand if first dimension is a CA_SUBVAR, ‘””’ otherwise.

	
tab_label

	Subvar label of strand if first dimension is a CA_SUBVAR, ‘””’ otherwise.

	
table_base_range

	[min, max] np.float64 ndarray range of unweighted-N for this stripe.

A non-MR stripe will have a single base, represented by min and max being the
same value. Each row of an MR stripe has a distinct base, which is reduced to a
range in that case.

	
table_margin_range

	[min, max] np.float64 ndarray range of (total) weighted-N for this stripe.

A non-MR stripe will have a single margin, represented by min and max being the
same value. Each row of an MR stripe has a distinct base, which is reduced to a
range in that case.

	
table_name

	Optional table name for this strand

Only for CA-as-0th case, provides differentiated names for stacked tables.

	
table_percentages

	1D np.float64 ndarray of table-percentage for each row.

Table-percentage is the fraction of the table weighted-N contributed by each
row, expressed as a percentage (float between 0.0 and 100.0 inclusive).

	
table_proportion_moes

	1D np.float64 ndarray of table-proportion margin-of-error (MoE) for each row.

The values are represented as fractions, analogue to the table_proportions
property. This means that the value of 3.5% will have the value 0.035. The
values can be np.nan when the corresponding proportion is also np.nan, which
happens when the respective columns margin is 0.

	
table_proportion_stddevs

	1D np.float64 ndarray of table-proportion std-deviation for each row.

	
table_proportion_stderrs

	1D np.float64 ndarray of table-proportion std-error for each row.

	
table_proportions

	1D np.float64 ndarray of fraction of weighted-N contributed by each row.

The proportion is expressed as a float between 0.0 and 1.0 inclusive.

	
title

	The str display name of this strand, suitable for use as a column heading.

Strand.name is the rows-dimension name, which is suitable for use as a title
of the row-headings. However, a strand can also appear as a column and this
value is a suitable name for such a column.

	
unweighted_bases

	1D np.float64 ndarray of base count for each row, before weighting.

When the rows dimension is multiple-response (MR), each value is different,
reflecting the base for that individual subvariable. In all other cases, the
table base is repeated for each row.

	
unweighted_counts

	1D np.float64 ndarray of unweighted count for each row of stripe.

	
weighted_bases

	1D np.float64 ndarray of table-proportion denominator for each row.

For a non-MR strand, all values in the array are the same. For an MR strand,
each value may be different, reflecting the fact that not all response options
were necessarily presented to all respondents.

	
weighted_counts

	1D np.float64 ndarray of weighted count for each row of strand.

The values are int when the underlying cube-result has no weighting.

Nub

	
class cr.cube.cubepart._Nub(cube, transforms=None)

	0D slice.

	
is_empty

	True if the partition has no counts, False otherwise

	
means

	Float scalar representing the mean.

	
table_base

	Int scalar of the unweighted N of the table.

	
unweighted_count

	Integer scalar of total unweighted count of the table

Dimension objects

	
class cr.cube.dimension.Dimension(dimension_dict, dimension_type, dimension_transforms=None)

	Represents one dimension of a cube response.

Each dimension represents one of the variables in a cube response. For
example, a query to cross-tabulate snack-food preference against region
will have two variables (snack-food preference and region) and will produce
a two-dimensional (2D) cube response. That cube will have two of these
dimension objects, which are accessed using
CrunchCube.dimensions.

	
alias

	Return the alias for the dimension if it exists, None otherwise.

	
all_elements

	Elements object providing cats or subvars of this dimension.

Elements in this sequence appear in cube-result order.

	
apply_transforms(dimension_transforms) → cr.cube.dimension.Dimension

	Return a new Dimension object with dimension_transforms applied.

The new dimension object is the same as this one in all other respects.

	
description

	str description of this dimension.

	
element_aliases

	tuple of string element-aliases for each valid element in this dimension.

Element-aliases appear in the order defined in the cube-result.

	
element_ids

	tuple of int element-id for each valid element in this dimension.

Element-ids appear in the order defined in the cube-result.

	
element_labels

	tuple of string element-labels for each valid element in this dimension.

Element-labels appear in the order defined in the cube-result.

	
hidden_idxs

	tuple of int element-idx for each hidden valid element in this dimension.

An element is hidden when a “hide” transform is applied to it in its transforms
dict.

	
insertion_ids

	tuple of int insertion-id for each insertion in this dimension.

Insertion-ids appear in the order insertions are defined in the dimension.

	
name

	str name of this dimension, the empty string (“”) if not specified.

	
numeric_values

	tuple of numeric values for valid elements of this dimension.

Each category of a categorical variable can be assigned a numeric
value. For example, one might assign like=1, dislike=-1,
neutral=0. These numeric mappings allow quantitative operations
(such as mean) to be applied to what now forms a scale (in this
example, a scale of preference).

The numeric values appear in the same order as the
categories/elements of this dimension. Each element is represented by
a value, but an element with no numeric value appears as np.nan in
the returned list.

	
order_spec

	_OrderSpec proxy object for dimension.transforms.order dict from payload.

	
prune

	True if empty elements should be automatically hidden on this dimension.

	
selected_categories

	List of selected categories specified for this dimension.

	
shape

	int count of all elements in this dimension, both valid and missing.

	
smoothing_dict

	Optional dict of smoothing specifications.

	
subtotal_aliases

	tuple of string element-aliases for each subtotal in this dimension.

Element-aliases appear in the order defined in the cube-result.

	
subtotal_labels

	tuple of string element-labels for each subtotal in this dimension.

Element-labels appear in the order defined in the cube-result.

	
subtotals

	_Subtotals sequence object for this dimension.

Each item in the sequence is a _Subtotal object specifying a subtotal, including
its addends and anchor.

	
subtotals_in_payload_order

	_Subtotals sequence object for this dimension respecting the payload order.

Each item in the sequence is a _Subtotal object specifying a subtotal, including
its addends and anchor.

	
translate_element_id(_id) → Optional[str]

	Optional string that is the translation of various ids to subvariable alias

This is needed for the opposing dimension’s sort by opposing element, because
when creating a dimension, we don’t have access to the other dimension’s
ids to transform it. Therefore, the id for opposing element sort by value
transforms is not translated at creation time.

	If dimension is not a subvariables dimension, return the _id.

	If id matches an alias, then just use it.

	If id matches a subvariable id, translate to corresponding alias.

	If id matches an element id, translate to corresponding alias.

	If id can be parsed to int and matches an element id, translate to alias.

	If id is int (or can be parsed to int) and can be used as index (eg in range
0-# of elements), use _id’th alias.

	If all of these fail, return None.

	
valid_elements

	Elements object providing access to non-missing elements.

Any categories or subvariables representing missing data are excluded
from the collection; this sequence represents a subset of that
provided by .all_elements.

Index

 _
 | A
 | C
 | D
 | E
 | F
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	_Nub (class in cr.cube.cubepart)

 	
 	_Slice (class in cr.cube.cubepart)

 	_Strand (class in cr.cube.cubepart)

A

 	
 	alias (cr.cube.dimension.Dimension attribute)

 	all_elements (cr.cube.dimension.Dimension attribute)

 	
 	apply_transforms() (cr.cube.dimension.Dimension method)

 	available_measures (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

C

 	
 	can_show_pairwise (cr.cube.cube.CubeSet attribute)

 	column_aliases (cr.cube.cubepart._Slice attribute)

 	column_codes (cr.cube.cubepart._Slice attribute)

 	column_index (cr.cube.cubepart._Slice attribute)

 	column_labels (cr.cube.cubepart._Slice attribute)

 	column_proportion_variances (cr.cube.cubepart._Slice attribute)

 	column_proportions (cr.cube.cubepart._Slice attribute)

 	column_proportions_moe (cr.cube.cubepart._Slice attribute)

 	column_share_sum (cr.cube.cubepart._Slice attribute)

 	column_std_dev (cr.cube.cubepart._Slice attribute)

 	column_std_err (cr.cube.cubepart._Slice attribute)

 	column_unweighted_bases (cr.cube.cubepart._Slice attribute)

 	column_weighted_bases (cr.cube.cubepart._Slice attribute)

 	columns_base (cr.cube.cubepart._Slice attribute)

 	columns_dimension_description (cr.cube.cubepart._Slice attribute)

 	columns_dimension_name (cr.cube.cubepart._Slice attribute)

 	columns_dimension_type (cr.cube.cubepart._Slice attribute)

 	columns_margin (cr.cube.cubepart._Slice attribute)

 	
 	columns_margin_proportion (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean_margin (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean_pairwise_indices (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean_pairwise_indices_alt (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean_stddev (cr.cube.cubepart._Slice attribute)

 	columns_scale_mean_stderr (cr.cube.cubepart._Slice attribute)

 	columns_scale_median (cr.cube.cubepart._Slice attribute)

 	columns_scale_median_margin (cr.cube.cubepart._Slice attribute)

 	counts (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	counts_with_missings (cr.cube.cube.Cube attribute)

 	covariance (cr.cube.cube.Cube attribute)

 	Cube (class in cr.cube.cube)

 	cube_index (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart.CubePartition attribute)

 	CubePartition (class in cr.cube.cubepart)

 	CubeSet (class in cr.cube.cube)

D

 	
 	derived_column_idxs (cr.cube.cubepart._Slice attribute)

 	derived_row_idxs (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	description (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.dimension.Dimension attribute)

 	
 	diff_column_idxs (cr.cube.cubepart._Slice attribute)

 	diff_row_idxs (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	Dimension (class in cr.cube.dimension)

 	dimension_types (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart.CubePartition attribute)

 	dimensions (cr.cube.cube.Cube attribute)

E

 	
 	element_aliases (cr.cube.dimension.Dimension attribute)

 	
 	element_ids (cr.cube.dimension.Dimension attribute)

 	element_labels (cr.cube.dimension.Dimension attribute)

F

 	
 	factory() (cr.cube.cubepart.CubePartition class method)

H

 	
 	has_scale_means (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	has_weighted_counts (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	hidden_idxs (cr.cube.dimension.Dimension attribute)

I

 	
 	inflate() (cr.cube.cube.Cube method)

 	inserted_column_idxs (cr.cube.cubepart._Slice attribute)

 	inserted_row_idxs (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	insertion_ids (cr.cube.dimension.Dimension attribute)

 	is_ca_as_0th (cr.cube.cube.CubeSet attribute)

 	is_empty (cr.cube.cubepart._Nub attribute)

M

 	
 	means (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Nub attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	min_base_size_mask (cr.cube.cubepart._Strand attribute)

 	missing (cr.cube.cube.Cube attribute)

 	missing_count (cr.cube.cube.CubeSet attribute)

N

 	
 	n_responses (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	name (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.dimension.Dimension attribute)

 	
 	ndim (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart.CubePartition attribute)

 	numeric_values (cr.cube.dimension.Dimension attribute)

O

 	
 	order_spec (cr.cube.dimension.Dimension attribute)

 	
 	overlaps (cr.cube.cube.Cube attribute)

P

 	
 	pairwise_indices (cr.cube.cubepart._Slice attribute)

 	pairwise_indices_alt (cr.cube.cubepart._Slice attribute)

 	pairwise_means_indices (cr.cube.cubepart._Slice attribute)

 	pairwise_means_indices_alt (cr.cube.cubepart._Slice attribute)

 	pairwise_significance_means_p_vals() (cr.cube.cubepart._Slice method)

 	pairwise_significance_means_t_stats() (cr.cube.cubepart._Slice method)

 	pairwise_significance_p_vals() (cr.cube.cubepart._Slice method)

 	pairwise_significance_t_stats() (cr.cube.cubepart._Slice method)

 	pairwise_significance_tests (cr.cube.cubepart._Slice attribute)

 	partition_sets (cr.cube.cube.CubeSet attribute)

 	partitions (cr.cube.cube.Cube attribute)

 	payload_order (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	population_counts (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	population_counts_moe (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	population_fraction (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	(cr.cube.cubepart.CubePartition attribute)

 	population_proportion_stderrs (cr.cube.cubepart._Strand attribute)

 	population_proportions (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	population_std_err (cr.cube.cubepart._Slice attribute)

 	prune (cr.cube.dimension.Dimension attribute)

 	pvals (cr.cube.cubepart._Slice attribute)

 	pvalues (cr.cube.cubepart._Slice attribute)

R

 	
 	residual_test_stats (cr.cube.cubepart._Slice attribute)

 	row_aliases (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	row_codes (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	row_count (cr.cube.cubepart._Strand attribute)

 	row_labels (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	row_order() (cr.cube.cubepart._Slice method)

 	(cr.cube.cubepart._Strand method)

 	row_proportion_variances (cr.cube.cubepart._Slice attribute)

 	row_proportions (cr.cube.cubepart._Slice attribute)

 	row_proportions_moe (cr.cube.cubepart._Slice attribute)

 	row_share_sum (cr.cube.cubepart._Slice attribute)

 	row_std_dev (cr.cube.cubepart._Slice attribute)

 	row_std_err (cr.cube.cubepart._Slice attribute)

 	row_unweighted_bases (cr.cube.cubepart._Slice attribute)

 	row_weighted_bases (cr.cube.cubepart._Slice attribute)

 	rows_base (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	rows_dimension_alias (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_dimension_description (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_dimension_fills (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_dimension_name (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_dimension_type (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_margin (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	rows_margin_proportion (cr.cube.cubepart._Slice attribute)

 	rows_scale_mean (cr.cube.cubepart._Slice attribute)

 	rows_scale_mean_margin (cr.cube.cubepart._Slice attribute)

 	rows_scale_mean_stddev (cr.cube.cubepart._Slice attribute)

 	rows_scale_mean_stderr (cr.cube.cubepart._Slice attribute)

 	rows_scale_median (cr.cube.cubepart._Slice attribute)

 	rows_scale_median_margin (cr.cube.cubepart._Slice attribute)

S

 	
 	scale_mean (cr.cube.cubepart._Strand attribute)

 	scale_median (cr.cube.cubepart._Strand attribute)

 	scale_std_dev (cr.cube.cubepart._Strand attribute)

 	scale_std_err (cr.cube.cubepart._Strand attribute)

 	scale_stddev (cr.cube.cubepart._Strand attribute)

 	scale_stderr (cr.cube.cubepart._Strand attribute)

 	selected_categories (cr.cube.dimension.Dimension attribute)

 	selected_category_labels (cr.cube.cubepart.CubePartition attribute)

 	shape (cr.cube.cubepart._Strand attribute)

 	(cr.cube.cubepart.CubePartition attribute)

 	(cr.cube.dimension.Dimension attribute)

 	share_sum (cr.cube.cubepart._Strand attribute)

 	smoothed_column_index (cr.cube.cubepart._Slice attribute)

 	smoothed_column_percentages (cr.cube.cubepart._Slice attribute)

 	
 	smoothed_column_proportions (cr.cube.cubepart._Slice attribute)

 	smoothed_columns_scale_mean (cr.cube.cubepart._Slice attribute)

 	smoothed_means (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	smoothing_dict (cr.cube.dimension.Dimension attribute)

 	stddev (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	subtotal_aliases (cr.cube.dimension.Dimension attribute)

 	subtotal_labels (cr.cube.dimension.Dimension attribute)

 	subtotals (cr.cube.dimension.Dimension attribute)

 	subtotals_in_payload_order (cr.cube.dimension.Dimension attribute)

 	sums (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

T

 	
 	tab_alias (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	tab_label (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	table_base (cr.cube.cubepart._Nub attribute)

 	(cr.cube.cubepart._Slice attribute)

 	table_base_range (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	table_margin (cr.cube.cubepart._Slice attribute)

 	table_margin_range (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	table_name (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	table_percentages (cr.cube.cubepart._Strand attribute)

 	
 	table_proportion_moes (cr.cube.cubepart._Strand attribute)

 	table_proportion_stddevs (cr.cube.cubepart._Strand attribute)

 	table_proportion_stderrs (cr.cube.cubepart._Strand attribute)

 	table_proportion_variances (cr.cube.cubepart._Slice attribute)

 	table_proportions (cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	table_proportions_moe (cr.cube.cubepart._Slice attribute)

 	table_std_dev (cr.cube.cubepart._Slice attribute)

 	table_std_err (cr.cube.cubepart._Slice attribute)

 	table_unweighted_bases (cr.cube.cubepart._Slice attribute)

 	table_weighted_bases (cr.cube.cubepart._Slice attribute)

 	title (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Strand attribute)

 	total_share_sum (cr.cube.cubepart._Slice attribute)

 	translate_element_id() (cr.cube.dimension.Dimension method)

U

 	
 	unweighted_bases (cr.cube.cubepart._Strand attribute)

 	unweighted_count (cr.cube.cubepart._Nub attribute)

 	unweighted_counts (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	unweighted_valid_counts (cr.cube.cube.Cube attribute)

V

 	
 	valid_counts_summary_range (cr.cube.cube.Cube attribute)

 	(cr.cube.cube.CubeSet attribute)

 	
 	valid_elements (cr.cube.dimension.Dimension attribute)

 	valid_overlaps (cr.cube.cube.Cube attribute)

 	variable_name (cr.cube.cubepart.CubePartition attribute)

W

 	
 	weighted_bases (cr.cube.cubepart._Strand attribute)

 	weighted_counts (cr.cube.cube.Cube attribute)

 	(cr.cube.cubepart._Slice attribute)

 	(cr.cube.cubepart._Strand attribute)

 	
 	weighted_valid_counts (cr.cube.cube.Cube attribute)

Z

 	
 	zscores (cr.cube.cubepart._Slice attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down.png

_static/crunch_logo.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Crunch Cube’s documentation!

_static/up.png

_static/up-pressed.png

